Intermittent hypoxia conditioning prevents endothelial dysfunction and improves nitric oxide storage in spontaneously hypertensive rats

Author:

Manukhina Eugenia B12,Jasti Dinesh1,Vanin Anatoly F3,Downey H Fred1

Affiliation:

1. Department of Integrative Physiology, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA

2. Institute of General Pathology and Pathophysiology, Moscow 125315, Russian Federation

3. Institute of Chemical Physics, Moscow 119991, Russia

Abstract

Although intermittent hypoxia is often associated with hypertension, experimental and clinical studies have demonstrated definite antihypertensive effects of some intermittent hypoxia conditioning (IHC) regimens. Mechanisms of this antihypertensive response are unknown. Endothelial dysfunction related to disturbed synthesis and/or reduced availability of nitric oxide (NO) has been linked to hypertension. Thus, experiments were conducted to determine if IHC can improve endothelium-dependent relaxation and formation of releasable vascular NO stores of young (4–8-week-old) spontaneously hypertensive rats (SHR). Rats were subjected to either IHC (9.5–10% O2, 5–10 min, 5–8 times per day, 20 d) or to sham conditioning. Endothelium-dependent relaxation to acetylcholine was measured in norepinephrine-precontracted, isolated aortic rings, and the size of NO stores was evaluated by percent relaxation to N-acetylcysteine (NAC), which releases stored NO. The capacity of aortic rings for NO storage was evaluated by the relaxation to NAC after prior incubation with an NO donor. IHC significantly suppressed the development of hypertension in young SHR. Endothelial function decreased from 54.7 ± 4.6% to 28.1 ± 6.4% relaxation to acetylcholine after 20 d of sham IHC, whereas endothelial function was sustained (60.3 ± 6.0% relaxation) in IHC rats. IHC also induced formation of available NO stores and enhanced the capacity of aortic rings to store NO. Therefore, the antihypertensive effect of IHC in young SHR is associated with prevention of endothelial dysfunction and with increased accumulation of NO stores in vascular walls.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3