In vitro models for gluten toxicity: relevance for celiac disease pathogenesis and development of novel treatment options

Author:

Lindfors Katri1,Rauhavirta Tiina1,Stenman Satumarja1,Mäki Markku1,Kaukinen Katri23

Affiliation:

1. Pediatric Research Center, University of Tampere and Tampere University Hospital

2. School of Medicine, University of Tampere, 33014 Tampere

3. Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, 33521 Tampere, Finland

Abstract

In genetically predisposed individuals, dietary gluten in wheat, rye and barley triggers celiac disease, a systemic autoimmune disorder hallmarked by an extensive small-bowel mucosal immune response. The current conception of celiac disease pathogenesis is that it involves components of both innate and adaptive immunity whose activation typically leads to small-bowel villous atrophy with crypt hyperplasia. Currently, the only effective treatment for celiac disease is a strict lifelong gluten-free diet excluding all wheat-, rye- and barley-containing food products. During the diet, the clinical symptoms improve and the small-bowel mucosal damage recovers, while re-introduction of gluten into the diet leads to re-appearance of the symptoms and deterioration of the small-bowel mucosal architecture. In view of the restricted nature of the diet, alternative treatment is warranted. Improved understanding of the molecular basis of celiac disease has enabled researchers to suggest other therapeutic approaches. Although there is no animal model reproducing all features of celiac disease, the use of in vitro approaches including a variety of cell lines and the celiac patient small-bowel mucosal biopsy organ culture has generated knowledge about pathogenesis of celiac disease. In these culture systems, gluten induces different effects that can be quantified, thus also enabling studies concerning the efficacy of candidate therapeutic compounds for celiac disease. This review describes the intestinal epithelial cell models, celiac patient T-cell lines and clones, as well as the small-bowel mucosal organ culture methods widely used in studies of celiac disease, and summarizes the major findings obtained with these systems.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3