Carbon black nanoparticles enhance bleomycin-induced lung inflammatory and fibrotic changes in mice

Author:

Kamata Hirofumi1,Tasaka Sadatomo1,Inoue Ken-ichiro2,Miyamoto Keisuke1,Nakano Yasushi1,Shinoda Hiromi1,Kimizuka Yoshifumi1,Fujiwara Hiroshi1,Ishii Makoto1,Hasegawa Naoki1,Takamiya Rina3,Fujishima Seitaro4,Takano Hirohisa2,Ishizaka Akitoshi1

Affiliation:

1. Division of Pulmonary Medicine, Keio University School of Medicine, Tokyo 160-8582

2. Environmental Health Sciences Division, National Institute for Environmental Studies, Tsukuba 305-8506

3. Department of Biochemistry and Integrative Medical Biology, Keio University School of Medicine, Tokyo 160-8582

4. Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan

Abstract

With the recent increasing use of nanoparticles, there is concern that they may become an environmental risk factor as airborne particles. However, the impact of these particles on susceptible subjects with predisposing lung disease have not been sufficiently elucidated. In the present study, we investigated the effects of nanoparticles on pulmonary inflammatory and fibrotic changes induced by intratracheal bleomycin (BLM) challenge in mice. Mice were intratracheally administered either vehicle, 14-nm carbon black nanoparticles (CBNPs), BLM or BLM plus CBNP. First, we assessed lung collagen content, lung compliance and fibrotic changes in histopathology on day 21 after instillation. Then, to elucidate how CBNP contributes to the development of BLM-induced fibrosis, we collected bronchoalveolar lavage (BAL) fluid on days 2, 7, 14 and 21 and determined the total and differential cell counts and concentrations of two proinflammatory cytokines (keratinocyte chemoattractant [KC] and interleukin [IL]-6) and two fibrogenic mediators (CC chemokine ligand 2 [CCL2] and transforming growth factor- β1 [TGF- β1]). Expression of nitrotyrosine, an indicator of oxidant injury, was also evaluated on days 7 and 21. CBNP, when combined with BLM, significantly enhanced BLM-induced increase in lung collagen content, decrease in lung compliance, and fibrotic changes in histopathology. CBNP significantly augmented BLM-induced increase in the numbers of inflammatory cells in BAL fluid on days 2 and 7 and levels of KC and IL-6 on day 2. In addition, CBNP administered in combination with BLM significantly elevated the levels of CCL2 on days 2, 7 and 14, and TGF- β1 on day 14 in BAL fluid as compared with BLM alone. Nitrotyrosine expression was also increased by BLM plus CBNP compared with BLM alone. In contrast, CBNP did not exert any significant effect on these parameters by itself. These results indicate that CBNP can exaggerate BLM-induced inflammatory and fibrotic changes in the lung, suggesting the potential impact of nanoparticles on lung inflammation and fibrosis.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3