Alteration in myocardial prostaglandin D synthase expression in pressure overload-induced left ventricular remodeling in rats

Author:

Nagalla Krishna T1,Gole Monica1,Claudino Mario A2,Gardner Jason D2,Murray David B1

Affiliation:

1. Department of Pharmacology, University of Mississippi, University, MS 38677

2. Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA

Abstract

We hypothesized that acute pharmacological blockade of cyclooxygenase-2 (COX-2) using nimesulide (Nime) would prevent maladaptive changes in left ventricular (LV) structure and function secondary to abdominal aortic coarctation-induced pressure overload (PO). In vivo LV chamber dimension and function were assessed by pressure/volume admittance catheter at 14 days' postsurgery in three groups ( n ≥ 6/group): sham-operated (Sham); untreated PO; and selective COX-2 inhibitor nimesulide-treated PO (PO + Nime; 25 mg/kg/d). Treatment was initiated 24 h prior to surgical induction of PO. Relative to Sham, there was a marked increase in LV mass index in the PO groups (2.2 ± 0.01 mg/g versus 2.9 ± 0.10 mg/g Sham versus PO, PO+Nime: 2.5 ± 0.03 mg/g). End diastolic volume, an indicator of chamber size, was significantly decreased in the PO animals compared with Sham (202 ± 17 μL versus 143 ± 16 μL Sham versus PO, PO + Nime: 226 ± 9 μL). Collagen levels in PO rats assessed by hydroxyproline analysis were significantly elevated relative to Sham values. Nimesulide treatment attenuated: (1) the increase in LV mass index; (2) the reduction in end diastolic volume; and (3) the PO-induced increase in myocardial collagen. In summary, acute COX-2 inhibition with nimesulide attenuated the maladaptive changes in the LV after PO. Acknowledging the clinical failure of chronic COX-2 inhibitor use, we propose that acute treatment with COX-2 inhibition during the initial stages of cardiac remodeling can be beneficial in maintaining the normal cardiac structure and function during PO.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3