Helix B surface peptide administered after insult of ischemia reperfusion improved renal function, structure and apoptosis through beta common receptor/erythropoietin receptor and PI3K/Akt pathway in a murine model

Author:

Yang Cheng12,Zhao Tian12,Lin Miao12,Zhao Zitong12,Hu Linkun3,Jia Yichen12,Xue Yinjia12,Xu Ming12,Tang Qunye12,Yang Bin45,Rong Ruiming12,Zhu Tongyu126

Affiliation:

1. Department of Urology, Zhongshan Hospital, Fudan University;

2. Shanghai Key Laboratory of Organ Transplantation, Shanghai, 200032;

3. Department of Urology, First Affiliated Hospital, Suzhou University, 188 Shizi Street, Suzhou, Jiangsu Province 215000, P R China;

4. Transplant Group, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester General Hospital, University Hospitals of Leicester, Leicester, LE5 4PW, UK;

5. Department of Nephrology, Affiliated Hospital of Nantong University, University of Nantong, Nantong, 226001;

6. Qingpu Branch Zhongshan Hospital, Fudan University, Shanghai 201700, P R China

Abstract

Erythropoietin (EPO) has been well recognized as a tissue protective agent by inhibiting apoptosis and inflammation. The tissue protective effect of EPO, however, only occurs at a high dosage, which may elicit severe side-effects at the meantime. Helix B surface peptide (HBSP), a novel peptide derived from the non-erythropoietic helix B of EPO, plays a specific role in tissue protection. We investigated effects of HBSP and the expression of its heterodimeric receptor, beta common receptor (βcR)/EPO receptor (), in a murine renal ischemia reperfusion (IR) injury model. HBSP significantly ameliorated renal dysfunction and tissue damage, decreased apoptotic cells in the kidney and reduced activation of caspase-9 and 3. The βcR/EPOR in the kidney was up-regulated by IR, but down-regulated by HBSP. Further investigation revealed that the expression and phosphorylation of Akt was dramatically enhanced by HBSP, but strongly reversed by wortmannin, the PI3K inhibitor. Wortmannin intervention improved βcR/EPOR expression, promoted caspase-9 and 3 activation, and increased active caspase-3 positive cells, while renal function and structure, and apoptotic cell counts scarcely changed. This result indicates a significant contribution of PI3K/Akt signaling pathway in the renoprotection of HBSP. The therapeutic effects of HBSP in this study suggest that HBSP could be a better candidate for renal protection.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3