Effects of mechanical stimulation on viscoelasticity of rabbit scleral fibroblasts after posterior scleral reinforcement

Author:

Wang Guohui1,Chen Weiyi2

Affiliation:

1. College of Pharmacy and Biological Science, Weifang Medical University, Weifang 261053

2. Institute of Applied Mechanics & Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China

Abstract

To understand the effect of mechanical stimulation on posterior scleral reinforcement (PSR), rabbit scleral fibroblasts after PSR were subjected to stretch in vitro, and the viscoelastic behavior of scleral fibroblasts was evaluated. Three-week-old rabbits were monocularly treated by eyelid suturation randomly to prepare the experimental myopia eyes. After 60 days, the experimental myopia eyes were treated by PSR. After six months, the posterior pole scleral fibroblasts (normal sclera – group A, sclera after operation – group B and fusion region of sclera and reinforcing band – group C) were isolated and cultured in vitro. The cells were subjected to cyclic stretch regimens (sine wave, 3% and 6% elongation amplitude, 0.1 Hz, 48-h duration) by an FX-4000 Tension System. The micropipette aspiration technique was used to investigate the viscoelasticity of scleral fibroblasts. The cellular viscoelasticity ( E0, E and μ) of group C was significantly lower than groups A and B ( P < 0.05), and there was no significant difference between groups A and B ( P > 0.05). The results show that the viscoelasticity in different regions of sclera after PSR is different. Following a 48-h stretch, the cellular viscoelastic parameters were significantly decreased when compared with the respective static groups ( P < 0.05) in groups A and B. For group C, the viscoelasticity of the stretch group was significantly higher than the static control group ( P < 0.05). There was no difference between the 3% and 6% stretch groups in each group ( P > 0.05). The changes of viscoelasticity suggest that different regions of sclera have different responses to mechanical stimulation in the process of treating high myopia by PSR and that mechanical stimulation plays an important role in the treatment of axial myopia by regulating the viscoelasticity of scleral fibroblasts.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3