Porosome: the secretory portal

Author:

Jena Bhanu P1

Affiliation:

1. Department of Physiology, Wayne State University School of Medicine, 5245 Scott Hall, Detroit, MI 48201, USA

Abstract

‘It seems terribly wasteful that, during the release of hormones and neurotransmitters from a cell, the membrane of a vesicle should merge with the plasma membrane to be retrieved for recycling only seconds or minutes later.’ – Erwin Neher, Nature 1993;363:497–498. This insightful statement so appropriately put, clearly reflected on the perception that secretory vesicles completely merge at the cell plasma membrane, failing to justify the generation of partially empty secretory vesicles in cells following secretion. A rational cellular mechanism would employ the transient fusion of secretory vesicles at the cell plasma membrane without compromising vesicle integrity, combined with vesicle retrieval following partial discharge of contents, to generate such partially empty vesicles following secretion. This hypothesis was finally confirmed with the serendipitous discovery of the porosome almost 16 years ago. The porosome has been demonstrated to be the universal secretory portal in cells and is present at the cell plasma membrane. In the past decade, the composition of the porosome, its dynamics, its structure at nanometer resolution in realtime using atomic force and electron microscopy, and its functional reconstitution into artificial lipid membrane, has resulted in a paradigm shift and a molecular understanding of the secretory process in cells. A brief background on porosome discovery, and our current understanding of its structure and function is summarized in this Minireview.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3