The influence of gestational zinc deficiency on the fetal insulin-like growth factor axis in the rat

Author:

Hanna Lynn A12,Clegg Michael S3,Ellis-Hutchings Robert G4,Niles Brad J5,Keen Carl L16

Affiliation:

1. Department of Nutrition

2. Department of Family and Consumer Sciences, California State University Sacramento, 6000 J Street, Sacramento, CA 95819-6053

3. Department of Food Science and Technology

4. Department of Environmental Toxicology

5. Department of Molecular and Cellular Biology, University of California at Davis, One Shields Avenue, Davis, CA 95616

6. Department of Internal Medicine, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA

Abstract

The insulin-like growth factor (IGF) axis, a key regulator of embryonic growth and development, is exquisitely sensitive to the nutrient status of the animal. In addition to macronutrient deficiencies, zinc deficiency can impact the IGF axis. Gestational zinc deficiency is teratogenic, resulting in intrauterine growth retardation and structural abnormalities. The aim of this study was to investigate the effects of gestational zinc deficiency on the fetal IGF axis in a rat model. From gestation day (GD) 0.5, dams consumed zinc-deficient (ZD, 0.3 mg zinc/kg) or control (25 mg zinc/kg) diet ad libitum, while a third group of dams consumed the control diet in amounts equivalent to the food intake of the ZD dams (Paired group). On GD 19.5 fetal tissue, blood and amniotic fluid were collected. Fetal growth was significantly reduced by zinc deficiency compared with the Paired and Control groups. Fetuses from the Paired group were smaller compared with the Control, but only ZD fetuses had structural malformations. Amniotic fluid IGF-1 concentrations were significantly lower in the Paired group than in the ZD and Control groups. Plasma of ZD fetuses contained lower levels of IGF binding protein-1 when compared with fetuses in the Paired and Control groups. Fetal liver IGF-1 mRNA levels were lower in the ZD fetuses than in the Paired and Control fetuses. These observations suggest that differences in the fetal IGF axis between ZD and Paired groups contribute to the poor pregnancy outcome and enhanced fetal growth retardation observed with zinc deficiency.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3