Apoptosis caused by an inhibitor of NO production in the decidua of rat from mid-gestation

Author:

Suzuki Takehito1,Nagamatsu Chiaki1,Kushima Takahiro1,Miyakoshi Ryu1,Tanaka Kazuaki12,Morita Hidetoshi1,Sakaue Motoharu1,Takizawa Tatsuya12

Affiliation:

1. Graduate School of Veterinary Medicine

2. Research Institute of Biosciences, Azabu University, Sagamihara, Kanagawa 229-8501, Japan

Abstract

We previously reported that nitric oxide (NO) is first detected in the uterus of a pregnant rat on gestational day 13.5 (GD13.5) and that NO levels peak on GD17.5. In addition, NO production in the uterus is mainly derived from the decidua and not the myometrium. The aim of the present study was to reveal the role of NO that peaked on GD17.5 of gestation in the decidua. To inhibit NO production, pregnant rats were continuously administered by an nitric oxide synthase inhibitor, NG-nitro-l-arginine-methyl ester (l-NAME) for 48 h. In the control group, saline was infused instead of l-NAME. After treatment, the decidua were obtained from GD13.5, GD17.5 and GD21.5 rats. Apoptosis and activated caspase-3-positive cells were observed by transferase-mediated dUTP nick-end labeling (TUNEL) assay and immunohistochemistry, respectively. The caspase-3 enzyme activity was also measured in the cell lysate from the decidua. The numbers of TUNEL-positive cells and activated caspase-3-positive cells each increased and the amount of caspase-3 activity also increased significantly in rats on GD17.5 than in rats in the control group, but no changes were observed in rats on GD13.5 and GD21.5. Furthermore, enzyme activity regarding the initiator caspases, caspase-8 and -9, upstream factors for caspase-3 in the caspase cascade, was measured simultaneously on GD17.5 under the same treatment. Caspase-8 and -9 enzyme activities increased significantly in the control group; an increment of caspase-8 activity was especially prominent. The present results indicate that an inhibitor of NO production caused apoptosis through typical apoptotic signals in the decidua on GD17.5, suggesting that an NO peak in the decidua is essential to cell survival and the maintenance of uterine formation.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3