Maternal dietary chromium restriction programs muscle development and function in the rat offspring

Author:

Padmavathi Inagadapa J N1,Rao Kalashikam Rajender1,Venu Lagishetty2,Ismail Ayesha1,Raghunath Manchala1

Affiliation:

1. Division of Endocrinology and Metabolism, National Institute of Nutrition, Hyderabad -500 007, India

2. Department of Orthopaedic Surgery, David Geffen School of Medicine UCLA, Los Angeles, CA 90095, USA

Abstract

Intrauterine growth retardation programs the fetus to manipulated metabolic changes that lead to adult diseases. Considering that chromium (Cr) supplements influence lean body mass (LBM) in both humans and experimental animals, we have studied the effect of maternal Cr restriction on muscle development and function in the rat offspring. Female weanling Wistar/NIN rats received, for 12 weeks, a control or 65% Cr-restricted diet ad libitum and mated with control males. While control mothers/offspring received control diet throughout (CrC), some restricted mothers were switched to control diet from conception (CrRC) and parturition (CrRP) and their offspring were weaned on to control diet. Half of the remaining restricted pups were weaned on to control diet (CrRW) and the other half continued on restricted diet throughout (CrR). Maternal CrR significantly decreased the percent of LBM (LBM %) and fat-free mass (FFM %) in the offspring and this was associated with decreased expression of the myogenic genes: MyoD, Myf5 and MyoG. Surprisingly, expression of the muscle atrophy genes, Atrogin and MuRF 1, was also decreased in CrR offspring. Although basal glucose uptake by muscle was higher in CrR than in CrC offspring, the stimulation with insulin was comparable, implying no change in its insulin sensitivity. Rehabilitation partly corrected myogenic and atrophic gene expression but had no effect on LBM % or FFM % or glucose uptake by muscle. The results show that maternal Cr restriction in rats may irreversibly impair muscle development and glucose uptake by muscle. Modulation of muscle atrophy appears to be an adaptive mechanism to preserve muscle mass in CrR offspring.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3