Time course of retinal degeneration associated with the absence of 1, 4, 5-inositol trisphosphate receptor in Drosophila melanogaster

Author:

Vázquez-Martínez Olivia1,Loranca Angélica1,Palma-Tirado Lourdes1,Wischin-Fuentes Sabina1,Villalobos-Leal Mónica1,Antaramián Anaid1,Riesgo-Escovar Juan1,Hernández-Muñoz Rolando2,Díaz-Muñoz Mauricio1

Affiliation:

1. Instituto de Neurobiología, Km 15 Carretera QRO-SLP, Campus UNAM-Juriquilla, Querétaro 76230

2. Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México

Abstract

The absence of the inositol trisphosphate receptor is associated with a gradual retinal degeneration in Drosophila melanogaster. To characterize the time-course profile of this process, mosaic flies expressing a null allele of the itp gene in the eye were studied by electroretinograms and electronic microscopy. Membrane contour alterations, disrupted mitochondria, altered morphology and even loss of photoreceptors were increased progressively starting 5 d after hatching, were more evident during days 10–15 and promoted highly disorganized structures thereafter. The synaptic transmission and membrane potential of retinal cells were also significantly distorted, showing reduced ON and OFF transients as well as membrane potential from day 10 of hatching, and the functional defects became progressively more severe. Unexpectedly, these alterations were detected not only in the non-pigmented mutant ommatidia, but also in the pigmented ommatidia, including heterozygous and twin clones expressing 1, 4, 5-inositol trisphosphate receptor (IP3R). To explore the mechanism underlying this degenerative process, the progression of pro-oxidant and apoptotic reactions was characterized by immunohistochemical techniques. Mutant ommatidia showed intermittent episodes of increased pro-oxidant reactions (detected as adducts of 4-hydroxy-nonenal) throughout the fly's life. Similarly, several episodes of active caspase 3, an apoptotic effector, were evident with the same time pattern. Episodes of enhanced lipid peroxidation and apoptosis were also observed in the pigmented ommatidia of the mosaic eyes. The results indicate that photoreceptors lacking IP3R suffer episodes of increased lipid peroxidation, which eventually perturb the retinal subcellular organization and disrupt the phototransduction process and cell viability. Pigmented ommatidia also showed a similar pattern of damage, indicating that the degenerative process is non-autonomous and is so intense that it propagated to the non-mutant retinal cells in the mosaic eyes. In conclusion, ommatidia with a null mutation of IP3R degenerate by a process associated with intermittent lipid peroxidation and apoptotic activities.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The genetics of calcium signaling in Drosophila melanogaster;Biochimica et Biophysica Acta (BBA) - General Subjects;2012-08

2. Molecular biology of the InsP3Rs: focus on brain function in health and disease;Wiley Interdisciplinary Reviews: Membrane Transport and Signaling;2012-04-09

3. Erratum;Experimental Biology and Medicine;2010-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3