Affiliation:
1. Instituto de Investigaciones Biomédicas ‘Alberto Sols’, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Unit 761 CIBERER, Arturo Duperier 4, Madrid 28029, Spain
2. Dpto. Anatomía
3. Dpto. Medicina y Cirugía, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain
Abstract
Hearing and balance receptors in the inner ear are highly susceptible to damage caused by a wide variety of toxic substances, including aminoglycosides. This class of antibiotics is commonly used in medicine, even though they may produce irreversible bilateral neurosensorial deafness. To identify potential ototoxic agents and novel therapeutic targets, it is necessary to generate standardized animal models of aminoglycoside ototoxicity, which will also serve to explore otic cell repair and regeneration. Although the mouse is the species most often used in biomedical research, due to the genetic information and genetically-modified strains available, there are few standard models of aminoglycoside ototoxicity in adult mice. Most protocols to produce ototoxicity in adult mice employ high doses of aminoglycosides for long periods of time, which causes systemic toxicity, side-effects and high mortality rates. Here, we compare the effects of systemic treatment with four different, yet common, aminoglycoside antibiotics in two mouse strains, evaluating their effects on mortality, cochlear morphology and auditory brainstem responses. Our data indicate that gentamicin and neomycin caused high mortality in the adult mouse without significantly changing the auditory threshold. Amikacin produced a tolerable rate of mortality but at doses that did not exhibit ototoxicity. Finally, intramuscular injection of kanamycin in C57BL/6JOlaHsd mice induced significant dose-dependent bilateral hearing loss with a moderate rate of mortality and less discomfort than following subcutaneous administration.
Subject
General Veterinary,Animal Science and Zoology
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献