Developmental changes in the electroencephalogram and responses to a noxious stimulus in anaesthetized tammar wallaby joeys (Macropus eugenii eugenii)

Author:

Diesch T J12,Mellor D J123,Johnson C B4,Lentle R G2

Affiliation:

1. Riddet Centre

2. Institute of Food, Nutrition and Human Health

3. Animal Welfare Science and Bioethics Centre

4. Institute of Animal Veterinary and Biomedical Sciences, College of Sciences, Massey University, New Zealand

Abstract

The tammar wallaby joey is born extremely immature and most of its neurological development occurs in the maternal pouch. It is not known at what in-pouch age functions such as conscious sensory perception commence. We determined the electroencephalographic (EEG) responses to noxious stimulation in lightly anaesthetized tammar wallaby joeys. Baseline median (F50) and spectral edge (F95) frequencies, total power (Ptot) and frequency spectra between 1 and 30 Hz of the EEG power spectrum were determined. Joeys aged less than 127 days showed little or no EEG activity. Prolonged periods of spontaneous EEG activity were present by 142 days. This activity increased, as did the power in all frequencies, while the duration of any intervening isoelectric periods decreased with increasing in-pouch age. EEG responses to a noxious stimulus (toe clamping) changed with increasing in-pouch age as there was no response from joeys aged 94–127 days (no EEG), a minimal decrease in the F50 in those aged between 142 and 181 days ( P = 0.052) and a greater decrease in the F50 in those aged between 187 and 261 days ( P < 0.001). The pattern of these changes, which presumably reflects anatomical and functional maturation of the cerebral cortex, is similar to, but develops more slowly than, that reported in the rat. The opening of the eyes and development of the pelage are discussed as markers of when brain development may be sufficient for joeys to consciously perceive noxious sensations including pain.

Publisher

SAGE Publications

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3