Análisis del uso de técnicas supervisadas de aprendizaje automático y profundo en la detección de fraude financiero

Author:

Rodriguez-Tovar Katherin LizethORCID,Gutiérrez-Portela FernandoORCID,Hernández-Aros LudiviaORCID

Abstract

En el mundo moderno se hace necesario el uso de técnicas, metodologías y acciones en busca de la integración de los diversos avances, herramientas y elementos vigentes para el trabajo conjunto en la solución a las problemáticas que afectan las finanzas de las organizaciones, puesto que ellas hacen que exista una dinámica empresarial, creando valor económico. Teniendo en cuenta lo anterior, en este estudio se analiza la prevención de fraudes empresariales, mediante el uso de técnicas de aprendizaje automático y profundo para generar prevención, tratamiento y resolución a los fraudes llevados a cabo en sistemas del orden financiero. A nivel metodológico, se obtuvo información en bases de datos a nivel documental, con fuentes fidedignas y estudios de caso, donde se prueba la efectividad en el uso de las técnicas anteriormente nombradas en la detección temprana del fraude empresarial. Los resultados obtenidos en los documentos consultados expresan que los algoritmos que presentan mayor efectividad en la prevención de estos fraudes son árbol de decisión, C5.0-SVM, Naïve Bayes y Random Forest, con porcentajes de: 92%, 83.15%, 80,4% y 76, 7% respectivamente. Frente al aprendizaje profundo, la literatura mostró que al hacer uso de unidades lógicas aritméticas neuronales y realizando la correcta clasificación de las neuronas iNALU y ReLU el porcentaje de efectividad incrementa en gran proporción. En la parte final de este documento se presentan y consolidan resultados y conclusiones, todo en el marco de la temática abordada, además la información recopilada en este documento está debidamente respaldada por los derechos de autor a quien corresponde.

Publisher

Instituto Tecnologico de Costa Rica

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3