Assessing the effectiveness of transfer learning strategies in BLSTM networks for speech fenoising

Author:

Marvin Coto-Jiménez ,Astryd González-Salazar ,Michelle Gutiérrez-Muñoz

Abstract

Denoising speech signals represent a challenging task due to the increasing number of applications and technologies currently implemented in communication and portable devices. In those applications, challenging environmental conditions such as background noise, reverberation, and other sound artifacts can affect the quality of the signals. As a result, it also impacts the systems for speech recognition, speaker identification, and sound source localization, among many others. For denoising the speech signals degraded with the many kinds and possibly different levels of noise, several algorithms have been proposed during the past decades, with recent proposals based on deep learning presented as state-of-the-art, in particular those based on Long Short-Term Memory Networks (LSTM and Bidirectional-LSMT). In this work, a comparative study on different transfer learning strategies for reducing training time and increase the effectiveness of this kind of network is presented. The reduction in training time is one of the most critical challenges due to the high computational cost of training LSTM and BLSTM. Those strategies arose from the different options to initialize the networks, using clean or noisy information of several types. Results show the convenience of transferring information from a single case of denoising network to the rest, with a significant reduction in training time and denoising capabilities of the BLSTM networks.

Publisher

Instituto Tecnologico de Costa Rica

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3