METABOLIC CONTROL OF HIGH-FREQUENCY GAMMA OSCILLATIONS IN THE BRAIN

Author:

Pomytkin I. A.1,Karkischenko N. N.2

Affiliation:

1. I.M. Sechenov First Moscow State Medical University; Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia

2. Scientific Center of Biomedical Technologies of the Federal Medical and Biological Agency of Russia

Abstract

A high-frequency electrical activity across the range of 30–100 Hz, known as gamma rhythms, is observed in many regions of the brain. This phenomenon serves to synchronize the activity of various neural networks intended to process, transmit, store and receive information. Gamma rhythms play a key role in such processes of higher nervous activity as attention, sensory perception and memory formation. Impairment of gamma rhythms is a common symptom of diseases associated with cognitive impairment, including Alzheimer’s disease, epilepsy and schizophrenia. Recent studies have shown that a particular population of GABAergic-inhibiting neurons, i.e. parvalbumin-positive (PV+) interneurons, is the source of high-frequency oscillations. Maintenance of gamma rhythms is an extremely energy-intensive process that relies on a high rate of oxidative phosphorylation in the mitochondria of neurons and is limited by the presence of glucose. Insulin may be involved in the metabolic control of gamma oscillations, since PV+ interneurons selectively express the insulin-dependent glucose transporter GLUT4, which can provide an additional glucose influx under near-limit functioning conditions as in the case of high-frequency gamma oscillations. This review generalized available literature data on the relationship between metabolism and a high-frequency electrical brain activity, with an emphasis on the possible contribution of central insulin resistance to disturbances of gamma rhythms in the brain.

Publisher

Scientific Center for Biomedical Technologies of the Federal Medical-Biological Agency

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3