Chaos-based compression sensing on wireless sensor network: enabling a low-power and high-performance system

Author:

Quoc AnhORCID,Cao Van The,Tran Duc Tan

Abstract

The energy of sensor nodes in operation mode is primarily consumed by the wireless transceivers. Therefore, reducing the transmitted data can lead to significant energy savings. Compressive sensing is a technique that can reproduce an original signal using a smaller number of samples than required by the Nyquist theorem, by exploiting the sparsity of the signal in the represented domain. In Wireless Sensor Networks, compressed sampling is performed at the sensor node, and decompression is performed at the sink node. However, the limited computing and resource constraints in sensor nodes should be taken into consideration when applying the compressed sensing technique. This paper proposes using a non-linear system to generate chaos-based coefficient sequences applied in the sensor nodes of a landslide warning system. The experimental study demonstrated that the sensor node utilizing pseudo-random sampling is faster and less complex in comparison to the sensor node employing random sampling.

Publisher

Academy of Military Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3