Random lasers based on inverse photonic glass structure

Author:

Nguyen Hoang,Nguyen Toan,Le Hai,Ta Duong

Abstract

Random laser has attracted much attention because of its unique physical properties and potential applications in lighting, speckle-free imaging, biosensing, and photonic devices. In this work, we confirm that scattering plays a vital role in random lasing. Then, we investigate lasing properties of random film lasers with two scattering structures, including polystyrenemicroparticles and air voids embedded in a polymer matrix with organic dye serving as a gain medium. These two structures are called direct and inverse photonic glass, respectively. The result indicates that random lasers based on inverse photonic glass have a lower threshold. Following this achievement, we implemented inverse photonic glass into microspheres to obtainrandom microlasers of different sizes. Our work shows that inverse photonic glass structure is an excellent medium for random lasers with a wide range of sizes and dimensions. Especially, the obtained random microlasers are promising for applications in microsensors and photonic integrated circuits.

Publisher

Academy of Military Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3