Building the method for multi-target tracking based on the combination of PHD filter and JPDA filter using particle filter in 3D mixed coordinate system

Author:

Nguyen Hung,Pham Thang,Tang Lam,Nguyen Tien,Phạm Hưng

Abstract

Changing the target number, non-linear measurement models and non-Gaussian noise faces a challenge to multi-target tracking problems which are factors affecting the accuracy, execution time and deciding the success of the method as well. In this paper, the authors present a method to solve these problems. Wherein, the motion of targets is represented in the mixed coordinate system 3D base on combining PHD (Probability Hypothesis Density) and JPDA (Joint Probability Data Association). This method can track multiple targets in the most general case, that is to change the target number, system model and measurement model which is non-linear as the noise is non-Gaussian. The result of this work can be applied to the real-time response system when the targets are moving in close distances with rapid maneuvering.

Publisher

Academy of Military Science and Technology

Reference17 articles.

1. [1]. X. R. Li and V. P. Jilkov, “A Survey of Maneuvering Target Tracking: Dynamic Models”, InProc. 2000 SPIE Conf. on Signal and Data Processing of Small Targets, vol. 4048, Orlando, Florida, USA, pp. 212-235, (2000).

2. [2]. X. R. Li and V. P. Jilkov, “A Survey of Maneuvering Target Tracking—Part III: Measurement Models”, In Proc. 2001 SPIE Conf. on Signal and Data Processing of Small Targets, vol. 4473, San Diego, CA, USA, (2001).

3. [3]. Anton Haug and Lauren Williams, “A Spherical Constant Velocity Model for Target Tracking in Three Dimensions”, IEEEAC Paper #1661, Version 1, (2011).

4. [4]. Thopas E. Fortmann, Yaakov Bar-Shalom and Molly Scheffe, “Multi-target tracking using joint probabilistic data association”, 0191-2216/80/0000-0807$00.75 0 1980 IEE.

5. [5]. Aliakbar Gorji Daronkolaei, Vahid Nazari, Mohammad Bagher Menhaj, and Saeed Shiry,”A Joint Probability Data Association Filter Algorithm for Multiple Robot Tracking Problems”, Amirkabir University of Technology, Tehran, Iran (2000)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3