Machine Learning Methods for Predicting the Popularity of Movies

Author:

Oyewola David Opeoluwa,Dada Emmanuel Gbenga

Abstract

The movie industry has grown into a several billion-dollar enterprise, and there is now a ton of information online about it. Numerous machine learning techniques have been created by academics and can produce effective classification models. In this study, different machine learning classification techniques are applied to our own movie dataset for multiclass classification. This paper's main objective is to compare the effectiveness of various machine learning techniques. This study examined five methods: Multinomial Logistic Regression (MLR), Support Vector Machine (SVM), Bagging (BAG), Naive Bayes (NBS) and K-Nearest Neighbor (KNN), while noise was removed using All K-Edited Nearest Neighbors (AENN). These techniques all utilize previous IMDb dataset to predict a movie's net profit value. The algorithms predict the profit at the box office for each of these five techniques. Based on the dataset used in this paper, which consists of 5043 rows and 14 columns of movies, this study evaluates the performance of all seven machine learning techniques. Bagging outperformed other machine learning techniques with a 99.56% accuracy rate.

Publisher

Institute of Electronics and Computer

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of the Technology Acceptance Model for Artificial Intelligence Applications in the Film Industry;2023 6th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI);2023-12-11

2. Application of SVM Classifier to model and analyse the Popularity of Games using Players feedback;2023 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2023-05-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3