YOUNG’S MODULUS OF CALCIUM-ALUMINO-SILICATE GLASSES: INSIGHT FROM MACHINE LEARNING

Author:

,SBAI IDRISSI MOUNA,EL HAMDAOUI AHMED, ,CHAFIQ TARIK,

Abstract

Modern technologies require the development of new materials with exceptional properties. Machine Learning (ML) and Deep Learning (DL) techniques have become important tools for discovering new materials and predicting the properties of specific materials, such as glasses. In this paper, we used ML and DL techniques to predict the Young's modulus E of Calcium-Alumino-Silicate (CAS) glasses based on their chemical composition. We evaluated four different algorithms, including Polynomial Regression (PR), Random Forest (RF), K-Nearest Neighbors (KNN), and Multi-Layer Perceptron Regressor (MLPRegressor). We found that the PR algorithm provides excellent predictions without Cross-Validation (CV), while the MLPRegressor yields the best performance when CV is implemented.

Publisher

Univesritatea Maritima

Reference36 articles.

1. "[1] S. Bishnoi et al., "Predicting Young's modulus of oxide glasses with sparse datasets using machine learning," Journal of Non-Crystalline Solids, vol. 524, p. 119643, Nov. 2019, DOI 10.1016/j.jnoncrysol.2019.119643.

2. [2] "Bulk elastic properties, hardness and fatigue of calcium aluminosilicate glasses in the intermediate-silica range - ScienceDirect." Accessed: Mar. 05, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0022309315302829

3. [3] J. C. Mauro and E. D. Zanotto, "Two Centuries of Glass Research: Historical Trends, Current Status, and Grand Challenges for the Future," International Journal of Applied Glass Science, vol. 5, no. 3, pp. 313-327, 2014, doi: 10.1111/ijag.12087.

4. [4] "Glasses-for-Nuclear-Waste-Immobilization.pdf." Accessed: Mar. 05, 2024. [Online]. Available: https://www.researchgate.net/profile/Michael-Ojovan/publication/267700284_Glasses_for_Nuclear_Waste_Immobilization/links/5465a9240cf2f5eb17ff42de/Glasses-for-Nuclear-Waste-Immobilization.pdf

5. [5] C. I. Merzbacher, B. L. Sherriff, J. S. Hartman, and W. B. White, "A high-resolution 29Si and 27Al NMR study of alkaline earth aluminosilicate glasses," Journal of Non-Crystalline Solids, vol. 124, no. 2, pp. 194-206, Oct. 1990, doi: 10.1016/0022-3093(90)90263-L.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3