Author:
Jang Sang-Min,Kim Jung-Woong,Kim Daehwan,Kim Chul-Hong,An Joo-Hee,Choi Kyung-Hee,Rhee Sangmyung
Abstract
Caldesmon (CaD), originally identified as an actin-regulatory protein, is involved in the regulation of diverse actin-related signaling processes, including cell migration and proliferation, in various cells. The cellular function of CaD has been studied primarily in the smooth muscle system; nothing is known about its function in skeletal muscle differentiation. In this study, we found that the expression of CaD gradually increased as C2C12 myoblast differentiation progressed. Silencing of CaD inhibited cell spreading and migration, resulting in a decrease in myoblast differentiation. Promoter analysis of the caldesmon gene (CALD1) and gel mobility shift assays identified Sox4 as a major trans-acting factor for the regulation of CALD1 expression during myoblast differentiation. Silencing of Sox4 decreased not only CaD protein synthesis but also myoblast fusion in C2C12 cells and myofibril formation in mouse embryonic muscle. Overexpression of CaD in Sox4-silenced C2C12 cells rescued the differentiation process. These results clearly demonstrate that CaD, regulated by Sox4 transcriptional activity, contributes to skeletal muscle differentiation.
Publisher
The Company of Biologists
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献