A MICROCALORIMETRIC STUDY OF TURTLE CORTICAL SLICES: INSIGHTS INTO BRAIN METABOLIC DEPRESSION

Author:

Doll C,Hochachka P,Hand S

Abstract

In previous papers, we have examined turtle cortical neurons in vitro for mechanisms of anoxic metabolic depression ('channel arrest' and changes in electrical parameters). Negative results prompted the current study with the aim of examining more closely the energy profile and metabolism of turtle cortical slices. Calorimetry is used to measure heat dissipation during normoxia and nitrogen perfusion (120 min) and the results are converted into an ATP utilization rate. These indicate that the control rate of ATP utilization (1.72 µmol ATP g-1 min-1) agrees closely with in vivo whole-brain metabolic measurements. Both nitrogen perfusion and pharmacologically induced anoxic (cyanide+N2) groups depressed heat dissipation considerably compared with the control value (nitrogen 37 %; pharmacological anoxia 49 %). The resulting ATP utilization estimates indicate metabolic depressions of 30 % (nitrogen) and 42 % (pharmacological anoxia). The slice preparation did not exhibit a change in any measured adenylate parameter for up to 120 min of anoxia or pharmacological anoxia. Significant changes did occur in [ADP], ATP/ADP ratio and energy charge after 240 min of exposure to anoxic conditions. These results support the idea that the turtle cortical slice preparation has a profound resistance to anoxia, with both nitrogen perfusion and pharmacological anoxia causing a rapid decline in heat dissipation and metabolism.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An overview of the mechanisms underlying hypoxia tolerance differences in aquatic animals and their inspirations for aquaculture;Reviews in Fish Biology and Fisheries;2023-07-24

2. Goldfish and crucian carp are natural models of anoxia tolerance in the retina;Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology;2022-08

3. Review: A history and perspective of mitochondria in the context of anoxia tolerance;Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology;2022-06

4. Oxygen-sensitive reduction in Ca2+-activated K+ channel open probability in turtle cerebrocortex;Neuroscience;2013-05

5. Anoxia Resistance in Lower and Higher Vertebrates;Innate Tolerance in the CNS;2012-08-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3