Skin peptides protect juvenile leopard frogs (Rana pipiens) against chytridiomycosis

Author:

Pask James D.1,Cary Tawnya L.2,Rollins-Smith Louise A.1

Affiliation:

1. Vanderbilt University School of Medicine;

2. University of Wisconsin-Madison

Abstract

Summary One issue of great concern for the scientific community is the continuing loss of diverse amphibian species on a global scale. Amphibian populations around the world are experiencing serious losses due to the chytrid fungus, Batrachochytrium dendrobatidis. This pathogen colonizes the skin leading to disruption of ionic balance and eventual cardiac arrest. In many species, antimicrobial peptides secreted into the mucus are thought to contribute to protection against colonization by skin pathogens. Although it is generally thought that antimicrobial peptides are an important component of innate immune defenses against B. dendrobatidis, much of the current evidence relies on correlations between effective antimicrobial peptide defenses and species survival. There have been few studies to directly demonstrate that antimicrobial peptides play a role. Using the northern leopard frog, Rana pipiens, we show here that injection of norepinephrine brings about a long-term depletion of skin peptides (initial concentrations do not recover until after day 56). When peptide stores recovered, the renewed peptides were similar in composition to the initial peptides by MALDI-TOF mass spectrometry and in activity against B. dendrobatidis determined by growth inhibition assays. Newly metamorphosed froglets depleted of their peptide stores and exposed to B. dendrobatidis died more rapidly than B. dendrobatidis-exposed froglets with their peptides intact. Thus, antimicrobial peptides in the skin mucus appear to provide some resistance to B. dendrobatidis infections, and it is important for biologists to recognize that this defense is especially important for newly metamorphosed frogs in which the adaptive immune system is still immature.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3