Intracellular Na+, K+ and Cl− activities in Acheta domesticus Malpighian tubules and the response to a diuretic kinin neuropeptide

Author:

Coast Geoffrey M.1

Affiliation:

1. Birkbeck, University of London, London WC1E 7HX, UK

Abstract

SUMMARY The mechanism of primary urine production and the activity of a diuretic kinin, Achdo-KII, were investigated in Malpighian tubules of Acheta domesticus by measuring intracellular Na+, K+ and Cl− activities, basolateral membrane voltage (Vb), fluid secretion and transepithelial ion transport. Calculated electrochemical gradients for K+ and Cl− across the basolateral membrane show they are actively transported into principal cells, and basolateral Ba2+-sensitive K+ channels do not contribute to net transepithelial K+ transport and fluid secretion. A basolateral Cl− conductance was revealed after the blockade of K+ channels with Ba2+, and a current carried by the passive outward movement of Cl− accounts for the hyperpolarization of Vb in response to Ba2+. Ion uptake via Na+/K+/2Cl− cotransport, driven by the inwardly directed Na+ electrochemical gradient, is thermodynamically feasible, and is consistent with the actions of bumetanide, which reduces fluid secretion and both Na+ and K+ transport. The Na+ gradient is maintained by its extrusion across the apical membrane and by a basolateral ouabain-sensitive Na+/K+-ATPase. Achdo-KII has no significant effect on the intracellular ion activities or Vb. Electrochemical gradients across the apical membrane were estimated from previously published values for the levels of Na+, K+ and Cl− in the secreted fluid. The electrochemical gradient for Cl− favours passive movement into the lumen, but falls towards zero after stimulation by Achdo-KII. This coincides with a twofold increase in Cl− transport, which is attributed to the opening of an apical Cl− conductance, which depolarises the apical membrane voltage.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3