Microtubules and microfilaments in tip growth: evidence that microtubules impose polarity on protonemal growth in Physcomitrella patens

Author:

DOONAN J. H.1,COVE D. J.2,LLOYD C. W.3

Affiliation:

1. Department of Cell Biology, John limes Institute, Colney Lane, Norwich, UK; Department of Pharmacology, Rutgers Medical School, Piscataway, NJ 08854, USA

2. Department of Genetics, University of Leeds, Leeds, UK

3. Department of Cell Biology, John limes Institute, Colney Lane, Norwich, UK

Abstract

In this study we compare the contributions of Factin and microtubules to tip growth in filamentous cells of the moss Physcomitrella patens. In tip growth, expansion seems to be restricted to the hemispherical apical dome. Cytoskeletal elements have been suspected, from drug studies, to be involved in this but electron microscopy has generally not confirmed the presence of an apical cytoskeleton. However, in a previous immunofluorescence study we reported that microtubules could be seen to focus upon the apical dome in tip cells of the moss P. patens. In the present investigation F-actin has also been detected at the apices of these cells. Anti-cytoskeletal drugs were therefore used to differentiate between the roles of actin filaments and microtubules in tip growth. At high concentrations (30μM), the herbicide cremart de-polymerized microtubules and caused tip swelling. F-actin was still present under such conditions but its fragmentation by cytochalasin D suppressed this herbicide-induced swelling. On its own, cytochalasin D arrested tip growth without causing swollen tips. At lower concentrations, cremart disorganized microtubules rather than causing their complete depolymerization. Under these conditions, new but swollen growing points were initiated along the filament. The addition of taxol to cremart-treated filaments tended to reduce swelling and to re-polarize outgrowth. With particular combinations of these drugs, multiple lateral out-growths were initiated in the vicinity of the nucleus. It is concluded: (1) that F-actin is present at the tips of Physcomitrella caulonemal apical cells; (2) that unfragmented F-actin is necessary for outgrowth; (3) that even disorganized microtubules permit some degree of outgrowth but that an unperturbed distribution of axial microtubules, focussing upon an apex, is essential in order to impose tubular shape and directionality upon expansion.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3