Textbook cricket goes to the field: the ecological scene of the neuroethological play

Author:

Dangles Olivier1,Casas Jérôme1,Coolen Isabelle1

Affiliation:

1. Université de Tours, IRBI UMR CNRS 6035, Parc Grandmont, 37200 Tours, France

Abstract

SUMMARYSensory ecology has recently emerged as a new focus in the study of how organisms acquire and respond to information from and about their environment. Many sensory scientists now routinely explore the physiological basis of sensing, such as vision, chemoreception or echolocation, in an ecological context. By contrast, research on one of the most performing sensors in the animal kingdom, the wind-sensitive escape system of crickets and cockroaches,has failed so far to encompass ecological and evolutionary considerations. We report survival and behavioural experiments in which wood crickets interacted freely with natural predators in the field. Our results illustrate how the lack of knowledge about the ecology of these insects may entail our understanding of the biological relevance of their wind sensors. We found that predation pressure was most important on early stage crickets. Because laboratory studies have focused exclusively on adults' sensory systems, it is crucial that physical, physiological and neurobiological studies now turn to juveniles.Another common assumption challenged by our results is the nature of the air flow to which crickets are sensitive. Our results identify wolf spiders as the major predatory risk for wood crickets. Air movement stimuli produced by hunting spiders are likely to be strikingly different from air flows produced by flying insects. Yet, our theoretical understanding of air motion sensing is currently drawn from oscillatory flows of flying predators only.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference61 articles.

1. Archer, S. N, Djamgoz, M. B. A., Loew, E. R., Partridge, J. C. and Valerga, S. (1999). Adaptive Mechanisms in the Ecology of Vision. London: Chapman and Hall.

2. Arnegard, M. E. and Carlson, B. A. (2005). Electric organ discharge patterns during group hunting by a mormyrid fish. Proc. R. Soc. Lond. B272,1305-1314.

3. Autrum, H. (1981). Handbook of Sensory Physiology. Berlin: Springer-Verlag.

4. Bailey, W. J. (1991). Acoustic Behaviour of Insects: An Evolutionary Perspective. London:Chapman and Hall.

5. Barlow, H. B. and Mollon, J. D. (1982). The Senses. Cambridge: Cambridge University Press.

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3