Freezing resistance of antifreeze-deficient larval Antarctic fish

Author:

Cziko Paul A.1,Evans Clive W.2,Cheng Chi-Hing C.1,DeVries Arthur L.1

Affiliation:

1. Department of Animal Biology, University of Illinois at Urbana-Champaign,Urbana, IL 61801, USA

2. Molecular Genetics and Development, School of Biological Sciences,University of Auckland, Auckland, New Zealand

Abstract

SUMMARYAntarctic notothenioids, along with many other polar marine fishes, have evolved biological antifreeze proteins (AFPs) to survive in their icy environments. The larvae of Antarctic notothenioid fish hatch into the same frigid environment inhabited by the adults, suggesting that they must also be protected by sufficient AFPs, but this has never been verified. We have determined the contribution of AFPs to the freezing resistance of the larvae of three species: Gymnodraco acuticeps, Pagothenia borchgrevinki and Pleuragramma antarcticum. Of the three, only P. borchgrevinki larvae are protected by high, adult levels of AFPs. Hatchling G. acuticeps and P. antarcticum have drastically inadequate AFP concentrations to avoid freezing at the ambient seawater temperature (-1.91°C). We raised G. acuticeps larvae and measured the AFP levels in their blood for ∼5 months post hatching. Larval serum freezing point was -1.34±0.04°C at the time of hatch; it began to decrease only after 30 days post hatch (d.p.h.), and finally reached the adult value (-2.61±0.03°C) by 147 d.p.h. Additionally, AFP concentrations in their intestinal fluids were very low at hatching, and did not increase with age throughout a sampling period of 84 d.p.h.Surviving in a freezing environment without adequate AFP protection suggests that other mechanisms of larval freezing resistance exist. Accordingly, we found that G. acuticeps hatchlings survived to-3.6±0.1°C while in contact with external ice, but only survived to-1.5±0.0°C when ice was artificially introduced into their tissues. P. antarcticum larvae were similarly resistant to organismal freezing. The gills of all three species were found to be underdeveloped at the time of hatch, minimizing the risk of ice introduction through these delicate structures. Thus, an intact integument, underdeveloped gill structures and other physical barriers to ice propagation may contribute significantly to the freezing resistance and survival of these larval fishes in the icy conditions of the Southern Ocean.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3