Characterization of ryanodine receptor and Ca2+-ATPase isoforms in the thermogenic heater organ of blue marlin (Makaira nigricans)

Author:

Morrissette Jeffery M.1,Franck Jens P. G.2,Block Barbara A.1

Affiliation:

1. Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950,USA

2. Present address: Occidental College, Los Angeles, CA 90041, USA

Abstract

SUMMARY A thermogenic organ is found beneath the brain of billfishes(Istiophoridae), swordfish (Xiphiidae) and the butterfly mackerel(Scombridae). The heater organ has been shown to warm the brain and eyes up to 14°C above ambient water temperature. Heater cells are derived from extraocular muscle fibers and express a modified muscle phenotype with an extensive transverse-tubule (T-tubule) network and sarcoplasmic reticulum (SR)enriched in Ca2+-ATPase (SERCA) pumps and ryanodine receptors(RyRs). Heater cells have a high mitochondria content but have lost most of the contractile myofilaments. Thermogenesis has been hypothesized to be associated with release and reuptake of Ca2+. In this study,Ca2+ fluxes in heater SR vesicles derived from blue marlin(Makaira nigricans) were measured using fura-2 fluorescence. Upon the addition of MgATP, heater SR vesicles rapidly sequestered Ca2+. Uptake of Ca2+ was thapsigargin sensitive, and maximum loading ranged between 0.8 μmol Ca2+ mg-1 protein and 1.0μmol Ca2+ mg-1 protein. Upon the addition of 10 mmol l-1 caffeine or 350 μmol l-1 ryanodine, heater SR vesicles released only a small fraction of the loaded Ca2+. However, ryanodine could elicit a much larger Ca2+ release event when the activity of the SERCA pumps was reduced. RNase protection assays revealed that heater tissue expresses an RyR isoform that is also expressed in fish slow-twitch skeletal muscle but is distinct from the RyR expressed in fish fast-twitch skeletal muscle. The heater and slow-twitch muscle RyR isoform has unique physiological properties. In the presence of adenine nucleotides, this RyR remains open even though cytoplasmic Ca2+ is elevated, a condition that normally closes RyRs. The fast Ca2+sequestration by the heater SR, coupled with a physiologically unique RyR, is hypothesized to promote Ca2+ cycling, ATP turnover and heat generation. A branch of the oculomotor nerve innervates heater organs, and, in this paper, we demonstrate that heater cells contain large `endplate-like'clusters of acetylcholine receptors that appear to provide a mechanism for nervous control of thermogenesis.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3