Vglut1 and ZnT3 co-targeting mechanisms regulate vesicular zinc stores in PC12 cells

Author:

Salazar Gloria1,Craige Branch1,Love Rachal1,Kalman Daniel1,Faundez Victor1

Affiliation:

1. Department of Cell Biology, Center for Neurodegenerative Disease, and Department of Pathology and Laboratory Medicine, Emory University, 615 Michael Street, Room 446, Atlanta, GA 30322, USA

Abstract

The lumenal ionic content of an organelle is determined by its complement of channels and transporters. These proteins reach their resident organelles by adaptor-dependent mechanisms. This concept is illustrated in AP-3 deficiencies, in which synaptic vesicle zinc is depleted because the synaptic-vesicle-specific zinc transporter 3 does not reach synaptic vesicles. However, whether zinc transporter 3 is the only membrane protein defining synaptic-vesicle zinc content remains unknown. To address this question, we examined whether zinc transporter 3 and the vesicular glutamate transporter Vglut1 (a transporter that coexists with zinc transporter 3 in brain nerve terminals) were co-targeted to synaptic-like microvesicle fractions in PC12 cells. Deconvolution microscopy and subcellular fractionation demonstrated that these two transporters were present on the same vesicles in PC12 cells. Vglut1 content in synaptic-like microvesicle fractions and brain synaptic vesicles was partially sensitive to pharmacological and genetic perturbation of AP-3 function. Whole-cell flow-cytometry analysis of PC12 cell lines expressing zinc transporter 3, Vglut1 or both showed that vesicular zinc uptake was increased by Vglut1 expression. Conversely, production of zinc transporter 3 increased the vesicular uptake of glutamate in a zinc-dependent fashion. Our results suggest that the coupling of zinc transporter 3 and Vglut1 transport mechanisms regulates neurotransmitter content in secretory vesicles.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3