Sensorimotor gating in NTS1 and NTS2 null mice: effects of d-amphetamine, dizocilpine, clozapine and NT69L

Author:

Oliveros Alfredo1,Heckman Michael G.2,del Pilar Corena-McLeod Maria1,Williams Katrina1,Boules Mona1,Richelson Elliott1

Affiliation:

1. Neuropsychopharmacology Laboratory, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA

2. Biostatistics Unit, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA

Abstract

SUMMARY Pre-pulse inhibition (PPI) of the acoustic startle reflex is deficient in patients with schizophrenia. This deficiency is mimicked in mice by the use of the psychotomimetic drugs d-amphetamine and dizolcipine. Antipsychotic drugs such as clozapine are used to treat schizophrenic patients and are also administered to mice to prevent PPI disruption. Neurotensin (NT) produces antipsychotic-like effects when injected into rodent brain through its effects at NT subtype 1 (NTS1) and 2 (NTS2) receptors. We hypothesized that the NT receptor agonist (NT69L) would prevent PPI disruption in mice challenged with d-amphetamine (10 mg kg–1) and dizocilpine (1 mg kg–1). We investigated the role of NTS1 and NTS2 in PPI using wild-type (WT), NTS1 (NTS1–/–) and NTS2 (NTS2–/–) knockout mice, via its disruption by psychotomimetic drugs, as well as the ability of clozapine and NT69L to block these PPI disruptions. There were no differences in baseline PPI across the three genotypes. d-Amphetamine and dizocilpine disrupted PPI in WT and NTS2–/– mice but not in NTS1–/– mice. In WT mice, clozapine (1 mg kg–1) and NT69L (1 mg kg–1) significantly blocked d-amphetamine-induced disruption of PPI. Similarly, in WT mice, clozapine significantly blocked dizocilpine-induced PPI disruption, but NT69L did not. In NTS2–/– mice clozapine blocked d-amphetamine-but not dizocilpine-induced PPI disruption, while NT69L blocked both d-amphetamine- and dizocilpine-induced PPI disruption. Our results indicate that NTS1 seems essential for d-amphetamine and dizocilpine disruption of PPI. Additionally, this report provides support to the hypothesis that NT analogs could be used as novel antipsychotic drugs.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3