Affiliation:
1. University of California, Riverside Department of Evolution, Ecology, and Organismal Biology , , Riverside, CA 92521 , USA
Abstract
ABSTRACT
A trade-off between locomotor speed and endurance occurs in various taxa, and is thought to be underpinned by a muscle-level trade-off. Among four replicate high runner (HR) lines of mice, selectively bred for voluntary wheel-running behavior, a negative correlation between average running speed and time spent running has evolved. We hypothesize that this trade-off is due to changes in muscle physiology. We studied the HR lines at generation 90, at which time one line (L3) is fixed for the mini-muscle phenotype, another is polymorphic (L6) and the others (L7, L8) lack mini-muscle individuals. We used in situ preparations to quantify the contractile properties of the triceps surae muscle complex. Maximal shortening velocity varied significantly, being lowest in mini-muscle mice (L3 mini=25.2 mm s−1, L6 mini=25.5 mm s−1), highest in normal-muscle mice L6 and L8 (40.4 and 50.3 mm s−1, respectively) and intermediate in normal-muscle L7 mice (37.2 mm s−1). Endurance, measured both as the slope of the decline in force and the proportion of initial force that could be sustained, also varied significantly. The slope was shallowest in mini-muscle mice (L3 mini=−0.00348, L6 mini=−0.00238), steepest in lines L6 and L8 (−0.01676 and −0.01853), and intermediate in L7 (−0.01145). Normalized sustained force was highest in mini-muscle mice (L3 mini=0.98, L6 mini=0.92) and lowest in L8 (0.36). There were significant, negative correlations between velocity and endurance metrics, indicating a muscle-level trade-off. However, this muscle-level trade-off does not seem to underpin the organismal-level speed and endurance trade-off previously reported as the ordering of the lines is reversed: the lines that run the fastest for the least time have the lowest muscle complex velocity and highest endurance.
Funder
National Science Foundation
University of California Riverside
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献