Behavioral and postural analyses establish sleep-like states for mosquitoes that can impact host landing and blood feeding

Author:

Ajayi Oluwaseun M.1ORCID,Marlman Justin M.1,Gleitz Lucas A.1,Smith Evan S.1,Piller Benjamin D.1,Krupa Justyna A.1,Vinauger Clément2,Benoit Joshua B.1ORCID

Affiliation:

1. University of Cincinnati 1 Department of Biological Sciences , , Cincinnati, OH 45221 , USA

2. Virginia Polytechnic Institute and State University 2 Department of Biochemistry , , Blacksburg, VA 24061 , USA

Abstract

ABSTRACTSleep is an evolutionarily conserved process that has been described in different animal systems. For insects, sleep characterization has been primarily achieved using behavioral and electrophysiological correlates in a few systems. Sleep in mosquitoes, which are important vectors of disease-causing pathogens, has not been directly examined. This is surprising as circadian rhythms, which have been well studied in mosquitoes, influence sleep in other systems. In this study, we characterized sleep in mosquitoes using body posture analysis and behavioral correlates, and quantified the effect of sleep deprivation on sleep rebound, host landing and blood-feeding propensity. Body and appendage position metrics revealed a clear distinction between the posture of mosquitoes in their putative sleep and awake states for multiple species, which correlated with a reduction in responsiveness to host cues. Sleep assessment informed by these posture analyses indicated significantly more sleep during periods of low activity. Night-time and daytime sleep deprivation resulting from the delivery of vibration stimuli induced sleep rebound in the subsequent phase in day and night active mosquitoes, respectively. Lastly, sleep deprivation suppressed host landing in both laboratory and field settings, and impaired blood feeding of a human host when mosquitoes would normally be active. These results suggest that quantifiable sleep states occur in mosquitoes and highlight the potential epidemiological importance of mosquito sleep.

Funder

National Institute of Allergy and Infectious Diseases

University of Cincinnati

National Institute of Food and Agriculture

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3