Affiliation:
1. School of Earth and Environmental Sciences, University of Adelaide, South Australia 5005, Australia
2. School of Biological Sciences, University of Queensland, St Lucia, Queensland 4072, Australia
3. Anatomy and Histology, Flinders University of South Australia, South Australia 5001, Australia
Abstract
SUMMARY
The hemimetabolous migratory locust Locusta migratoria progresses through five instars to the adult, increasing in size from 0.02 to 0.95 g, a 45-fold change. Hopping locomotion occurs at all life stages and is supported by aerobic metabolism and provision of oxygen through the tracheal system. This allometric study investigates the effect of body mass (Mb) on oxygen consumption rate (, μmol h–1) to establish resting metabolic rate (), maximum metabolic rate during hopping () and maximum metabolic rate of the hopping muscles () in first instar, third instar, fifth instar and adult locusts. Oxygen consumption rates increased throughout development according to the allometric equations , , and, if adults are excluded, and . Increasing body mass by 20–45% with attached weights did not increase mass-specific significantly at any life stage, although mean mass-specific hopping was slightly higher (ca. 8%) when juvenile data were pooled. The allometric exponents for all measures of metabolic rate are much greater than 0.75, and therefore do not support West, Brown and Enquist's optimised fractal network model, which predicts that metabolism scales with a ¾-power exponent owing to limitations in the rate at which resources can be transported within the body.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献