Signal emission and signal propagation during early aggregation in Dictyostelium discoideum

Author:

Gross J.D.,Peacey M.J.,Trevan D.J.

Abstract

Waves of chemotactic movement during the early phase of aggregation in Dictyostelium discoideum are of 2 kinds, concentric waves produced by cells that emit cyclic AMP signals spontaneously, and spirals generated by excitations relayed continuously around loops of excitable cells. The period of a spiral wave is the time taken for the excitation to make one complete circuit of the pacemaker loop. We have compared signal emission from the 2 types of source in time-lapse films made at a variety of temperatures. Our results show that spiral waves have a characteristic period length throughout most if not all of the early phase of aggregation, and that the period of concentric waves is generally longer and more variable. Temperature has a pronounced effect on period length and a lesser effect on propagation velocity. We find that each individual wave is propagated at constant velocity over distances of 1–2 cm but that the velocity of successive waves declines. This decline probably reflects some cumulative effect of the chemotactic excitations on the excitable properties of the aggregating cells.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Behavioural changes in slime moulds over time;Philosophical Transactions of the Royal Society B: Biological Sciences;2023-02-20

2. Spiral waves of divergence in the Barkley model of nilpotent matrices;Chaos, Solitons & Fractals;2022-06

3. Spatial heterogeneities shape the collective behavior of signaling amoeboid cells;Science Signaling;2020-10-27

4. Radial and Spiral Stream Formation in Proteus mirabilis Colonies;PLoS Computational Biology;2011-12-29

5. Collective oscillations in developing cells: Insights from simple systems;Development, Growth & Differentiation;2011-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3