Responses of compass neurons in the locust brain to visual motion and leg motor activity

Author:

Rosner Ronny12ORCID,Pegel Uta23,Homberg Uwe2ORCID

Affiliation:

1. Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK

2. Department of Biology, Animal Physiology & Center for Mind, Brain and Behavior - CMBB, Philipps-University Marburg, Marburg, Germany

3. Present address: Department of Biology, Case Western Reserve University, Cleveland, OH, USA

Abstract

The central complex, a group of midline neuropils in the insect brain, plays a key role in spatial orientation and navigation. Work in locusts, crickets, dung beetles, bees, and butterflies suggests that it harbors a network of neurons which determines the orientation of the insect relative to the pattern of polarized light in the blue sky. In locusts, these compass cells also respond to simulated approaching objects. Here we investigate in the locust Schistocerca gregaria whether compass cells change their activity when the animal experiences large-field visual motion or when the animal is engaged in walking behavior. We recorded intracellularly from these neurons while the tethered animals were allowed to perform walking movements on a slippery surface. We concurrently presented moving grating stimuli from the side or polarized light through a rotating polarizer from above. Large-field motion was combined with the simulation of approaching objects to evaluate whether responses differed from those presented on a stationary background. Here we show for the first time that compass cells are sensitive to large-field motion. Responses to looming stimuli were often more conspicuous during large-field motion. Walking activity influenced spiking rates at all stages of the network. The strength of responses to the plane of polarized light was affected in some compass cells during leg motor activity. The data show that signaling in compass cells of the locust central complex is modulated by visual context and locomotor activity.

Funder

Deutsche Forschungsgemeinschaft

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3