DNA damage responses in progeroid syndromes arise from defective maturation of prelamin A
Author:
Liu Yiyong1, Rusinol Antonio1, Sinensky Michael1, Wang Youjie1, Zou Yue1
Affiliation:
1. Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
Abstract
The genetic diseases Hutchinson-Gilford progeria syndrome (HGPS) and restrictive dermopathy (RD) arise from accumulation of farnesylated prelamin A because of defects in the lamin A maturation pathway. Both of these diseases exhibit symptoms that can be viewed as accelerated aging. The mechanism by which accumulation of farnesylated prelamin A leads to these accelerated aging phenotypes is not understood. Here we present evidence that in HGPS and RD fibroblasts, DNA damage checkpoints are persistently activated because of the compromise in genomic integrity. Inactivation of checkpoint kinases Ataxia-telangiectasia-mutated (ATM) and ATR (ATM- and Rad3-related) in these patient cells can partially overcome their early replication arrest. Treatment of patient cells with a protein farnesyltransferase inhibitor (FTI) did not result in reduction of DNA double-strand breaks and damage checkpoint signaling, although the treatment significantly reversed the aberrant shape of their nuclei. This suggests that DNA damage accumulation and aberrant nuclear morphology are independent phenotypes arising from prelamin A accumulation in these progeroid syndromes. Since DNA damage accumulation is an important contributor to the symptoms of HGPS, our results call into question the possibility of treatment of HGPS with FTIs alone.
Publisher
The Company of Biologists
Reference36 articles.
1. Abraham, R. T. (2001). Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev.15, 2177-2196. 2. Capell, B. C., Erdos, M. R., Madigan, J. P., Fiordalisi, J. J., Varga, R., Conneely, K. N., Gordon, L. B., Der, C. J., Cox, A. D. and Collins, F. S. (2005). Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson-Gilford progeria syndrome. Proc. Natl. Acad. Sci. USA102, 12879-12884. 3. Cortez, D., Guntuku, S., Qin, J. and Elledge, S. J. (2001). ATR and ATRIP: partners in checkpoint signaling. Science294, 1713-1716. 4. d'Adda di Fagagna, F., Reaper, P. M., Clay-Farrace, L., Fiegler, H., Carr, P., Von Zglinicki, T., Saretzki, G., Carter, N. P. and Jackson, S. P. (2003). A DNA damage checkpoint response in telomere-initiated senescence. Nature426, 194-198. 5. De Sandre-Giovannoli, A., Bernard, R., Cau, P., Navarro, C., Amiel, J., Boccaccio, I., Lyonnet, S., Stewart, C. L., Munnich, A., Le Merrer, M. et al. (2003). Lamin a truncation in Hutchinson-Gilford progeria. Science300, 2055.
Cited by
195 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|