Chewing variation in lepidosaurs and primates

Author:

Ross C. F.1,Baden A. L.2,Georgi J.3,Herrel A.4,Metzger K. A.5,Reed D. A.1,Schaerlaeken V.6,Wolff M. S.7

Affiliation:

1. Organismal Biology and Anatomy, University of Chicago, 1027 E. 57th Street, Chicago, IL 60637, USA

2. Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY 11794, USA

3. Department of Anatomy, Arizona College of Osteopathic Medicine, Midwestern University, 19555 North 59th Avenue, Glendale, AZ 85308, USA

4. Département d'Ecologie et de Gestion de la Biodiversité, Muséum National d'Histoire Naturelle, 57 rue Cuvier, Case postale 55, 75231, Paris, France

5. Hofstra University School of Medicine in Partnership with North Shore-LIJ, 145 Hofstra University, East Library Wing, Hempstead, NY 11549-1010, USA

6. Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610 Antwerpen, Belgium

7. Cariology and Comprehensive Care, College of Dentistry, New York University, 345 E 24th Street, New York, NY 10010, USA

Abstract

SUMMARYMammals chew more rhythmically than lepidosaurs. The research presented here evaluated possible reasons for this difference in relation to differences between lepidosaurs and mammals in sensorimotor systems. Variance in the absolute and relative durations of the phases of the gape cycle was calculated from kinematic data from four species of primates and eight species of lepidosaurs. The primates exhibit less variance in the duration of the gape cycle than in the durations of the four phases making up the gape cycle. This suggests that increases in the durations of some gape cycle phases are accompanied by decreases in others. Similar effects are much less pronounced in the lepidosaurs. In addition, the primates show isometric changes in gape cycle phase durations, i.e. the relative durations of the phases of the gape cycle change little with increasing cycle time. In contrast, in the lepidosaurs variance in total gape cycle duration is associated with increases in the proportion of the cycle made up by the slow open phase. We hypothesize that in mammals the central nervous system includes a representation of the optimal chew cycle duration maintained using afferent feedback about the ongoing state of the chew cycle. The differences between lepidosaurs and primates do not lie in the nature of the sensory information collected and its feedback to the feeding system, but rather the processing of that information by the CNS and its use feed-forward for modulating jaw movements and gape cycle phase durations during chewing.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3