Temperature affects susceptibility of intertidal limpets to bird predation

Author:

Pound Rachel J.1ORCID,Miller Luke P.2ORCID,King Felicia A.3ORCID,Burnaford Jennifer L.1ORCID

Affiliation:

1. Department of Biological Science, California State University Fullerton, Fullerton, CA 92834, USA

2. Department of Biology, San Diego State University, San Diego, CA 92182, USA

3. Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA

Abstract

High temperatures resulting in physiological stress and the reduced ability to resist predation can have life-or-death consequences for an organism. We investigated the effects of temperature on the susceptibility to predation for an ectothermic intertidal mollusc (the owl limpet, Lottia gigantea Sowerby) and its predator, the black oystercatcher (Haematopus bachmani Audubon). The ability of L. gigantea to resist bird predation during low tide is determined by the tenacity of attachment to the rock. We developed a transducer to measure the force of predatory attacks on limpets by a captive black oystercatcher and tested the hypothesis that exposure to warm temperatures during low tide emersion would affect the limpet's ability to resist dislodgement in trials with a morphometrically accurate beak mimic and a live bird. In beak mimic trials, four times as many limpets exposed to warm low tides were removed, as compared to limpets exposed to cool low tides or in ‘no low tide’ submerged conditions. Minimum time before limpet removal in captive bird trials was more than six times longer for limpets in cool low tide or no low tide treatments compared to limpets in the warm low tide treatment. We measured shear forces up to 36.63 N during predatory strikes. These direct measurements of the forces exerted by a living oystercatcher provide context for interactions with multiple prey species. Our data suggest that naturally occurring variation in body temperatures among individual prey items in the field could be an important driver of predator-prey interactions and subsequently community patterns.

Funder

Southern California Academy of Sciences

California State University, Fullerton Associated Students Inc.

California State University, Fullerton Department of Biological Science

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3