Transcriptional bursting: stochasticity in deterministic development

Author:

Leyes Porello Emilia A.1ORCID,Trudeau Robert T.1ORCID,Lim Bomyi1ORCID

Affiliation:

1. University of Pennsylvania Department of Chemical and Biomolecular Engineering , , Philadelphia, PA 19104 , USA

Abstract

ABSTRACT The transcription of DNA by RNA polymerase occurs as a discontinuous process described as transcriptional bursting. This bursting behavior is observed across species and has been quantified using various stochastic modeling approaches. There is a large body of evidence that suggests the bursts are actively modulated by transcriptional machinery and play a role in regulating developmental processes. Under a commonly used two-state model of transcription, various enhancer-, promoter- and chromatin microenvironment-associated features are found to differentially influence the size and frequency of bursting events – key parameters of the two-state model. Advancement of modeling and analysis tools has revealed that the simple two-state model and associated parameters may not sufficiently characterize the complex relationship between these features. The majority of experimental and modeling findings support the view of bursting as an evolutionarily conserved transcriptional control feature rather than an unintended byproduct of the transcription process. Stochastic transcriptional patterns contribute to enhanced cellular fitness and execution of proper development programs, which posit this mode of transcription as an important feature in developmental gene regulation. In this Review, we present compelling examples of the role of transcriptional bursting in development and explore the question of how stochastic transcription leads to deterministic organism development.

Funder

University of Pennsylvania

National Institutes of Health

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3