Affiliation:
1. Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA.
2. Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA.
3. Division of Reproductive Sciences, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA.
Abstract
Hox genes are key regulators of development. In mammals, the study of these genes is greatly confounded by their large number, overlapping functions and interspersed shared enhancers. Here, we describe the use of a novel recombineering strategy to introduce simultaneous frameshift mutations into the flanking Hoxa9, Hoxa10 and Hoxa11 genes, as well as their paralogs on the HoxD cluster. The resulting Hoxa9,10,11 mutant mice displayed dramatic synergistic homeotic transformations of the reproductive tracts, with the uterus anteriorized towards oviduct and the vas deferens anteriorized towards epididymis. The Hoxa9,10,11 mutant mice also provided a genetic setting that allowed the discovery of Hoxd9,10,11 redundant reproductive tract patterning function. Both shared and distinct Hox functions were defined. Hoxd9,10,11 play a crucial role in the regulation of uterine immune function. Non-coding non-polyadenylated RNAs were among the key Hox targets, with dramatic downregulation in mutants. We observed Hox cross-regulation of transcription and splicing. In addition, we observed a surprising anti-dogmatic apparent posteriorization of the uterine epithelium. In caudal regions of the uterus, the normal simple columnar epithelium flanking the lumen was replaced by a pseudostratified transitional epithelium, normally found near the more posterior cervix. These results identify novel molecular functions of Hox genes in the development of the male and female reproductive tracts.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献