Accelerometry predicts muscle ultrastructure and flight capabilities in a wild bird

Author:

Lalla Kristen M.1ORCID,Whelan Shannon1ORCID,Brown Karl2ORCID,Patterson Allison1ORCID,Jimenez Ana Gabriela2,Hatch Scott A.3ORCID,Elliott Kyle H.1

Affiliation:

1. Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada

2. Department of Biology, Colgate University, Hamilton, NY, USA

3. Institute for Seabird Research and Conservation, Anchorage, AK, USA

Abstract

Muscle ultrastructure is closely linked with athletic performance in humans and lab animals, and presumably plays an important role in the movement ecology of wild animals. Movement is critical for wild animals to forage, escape predators, and reproduce. However, little evidence directly links muscle condition to locomotion in the wild. We used GPS-accelerometers to examine flight behaviour and muscle biopsies in breeding black-legged kittiwakes (Rissa tridactyla) to assess muscle ultrastructure. Biopsied kittiwakes showed similar reproductive success and subsequent over-winter survival to non-biopsied kittiwakes, suggesting that our study method did not greatly impact foraging ability. Muscle fibre diameter was negatively associated with wing beat frequency, suggesting that larger muscle fibres facilitate powered flight. Number of nuclei per fibre was positively associated with average airspeed, likely because higher power output needed by faster-flying birds required plasticity for muscle fibre recruitment. These results suggest the potential for flight behaviour to predict muscle ultrastructure.

Funder

Natural Sciences and Engineering Research Council of Canada

Polar Knowledge Canada

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference63 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3