LIN7 regulates the filopodia and neurite promoting activity of IRSp53

Author:

Crespi Arianna,Ferrari Ilaria,Lonati Paola,Disanza Andrea,Fornasari Diego,Scita Giorgio,Padovano Valeria,Pietrini Grazia

Abstract

The insulin receptor substrate protein of 53 kDa (IRSp53) is critically involved in the formation of filopodia and neurites through mechanisms that have only in part been clarified. Here, we investigated the role of the small scaffold protein LIN7, an interactor of IRSp53. We found that formation of actin-filled protrusions in neuronal NSC34 cells and neurites in neuroblastoma N2A depends on motifs mediating the LIN7:IRSp53 association, as both the coexpression of LIN7 with IRSp53 or the expression of the L27-IRSp53 chimera (a fusion protein between IRSp53 and the LIN7L27 domain for plasma membrane protein complexes association) prevented actin-deficient protrusions induced by overexpressed IRSp53, and enhanced the formation of actin-filled protrusions. The regulatory role of LIN7 in IRSp53-mediated extension of filopodia was demonstrated by live-cell imaging experiments in neuronal N2A cells. Moreover, LIN7 silencing prevented the extension of filopodia and neurites, induced by ectopic expression of IRSp53 or serum starvation, respectively in undifferentiated and differentiated N2A cells. The expression of full length IRSp53 or the LIN7ΔPDZ mutant lacking the domain for association with IRSp53 was unable to restore neuritogenesis in LIN7 silenced cells. Conversely, defective neuritogenesis could be rescued by the expression of RNAi-resistant full length LIN7 or chimeric L27-IRSp53. Finally, LIN7 silencing prevented the recruitment of IRSp53 in Triton X-100 insoluble complexes, otherwise occurring in differentiated cells. Collectively these data indicate that LIN7 is a novel regulator of IRSp53, and that their association is required to promote the formation of actin-dependent filopodia and neurites.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3