Affiliation:
1. Institute of Developmental Biology, Russian Academy of Science, Moscow 117808,Russia
2. Tula State Pedagogical University, Tula 300026, Russia
Abstract
Freshwater pond snails Helisoma trivolvis and Lymnaea stagnalis undergo larval development and metamorphosis inside egg capsules. We report that their development is permanently under slight tonic inhibitory influence of the anterior sensory monoaminergic neurones, which are the remnants of the apical sensory organ. Conspecific juvenile snails, when reared under conditions of starvation and crowding, release chemical signals that are detected by these neurones in encapsulated larvae and reversibly suppress larval development, thus providing a link between environmental signals and developmental regulation. Induced retardation starts from the trochophore stage and results in up to twofold prolongation of the larval lifespan. Upon stimulation with the signal, the neurones increase synthesis and release of monoamines [serotonin (5-HT) in Helisoma and dopamine in Lymnaea] that inhibit larval development acting via ergometrine-sensitive internal receptors. Thus, the novel regulatory mechanism in larval development of molluscs is suggested and compared with the phenomenon of dauer larvae formation in the nematode Caenorhabditis elegans.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Cited by
72 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献