Metabolic catastrophe as a means to cancer cell death

Author:

Jin Shengkan123,DiPaola Robert S.234,Mathew Robin5,White Eileen235

Affiliation:

1. Department of Pharmacology, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA

2. University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA

3. Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA

4. Department of Medicine, 195 Little Albany Street, New Brunswick, NJ 08903, USA

5. Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers University, 679 Hoes Lane, Piscataway, NJ 08854, USA

Abstract

During tumorigenesis, normal growth mechanisms are deregulated and safeguards that eliminate abnormal cells by apoptosis are disabled. Tumor cells must also increase nutrient uptake and angiogenesis to support the upregulation of metabolism necessary for unrestricted growth. In addition, they have to rely on inefficient energy production by glycolysis. This glycolytic state can result from mutations that promote cell proliferation, the hypoxic tumor microenvironment and perhaps mitochondrial malfunction. Moreover, the very signals that enable unrestricted cell proliferation inhibit autophagy, which normally sustains cells during nutrient limitation. In tumors, inactivation of the autophagy pathway may enhance necrosis and inflammation and promote genomic instability, which can further enhance tumor growth. Thus, tumor cells cannot adapt efficiently to metabolic stress and could be induced to die by metabolic catastrophe, in which high energy demand is contrasted by insufficient energy production. Efforts to exploit this unique metabolic state clinically previously focused mainly on detecting tissue displaying increased glycolytic metabolism. The challenge now is to induce metabolic catastrophe therapeutically as an approach to killing the unkillable cells.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3