Are mitochondria the main contributor of reactive oxygen species in cells?

Author:

Zhang Yufeng1ORCID,Wong Hoi Shan2

Affiliation:

1. College of Health Sciences, The University of Memphis, Memphis, TN 38152, USA

2. Calico Life Sciences LLC, South San Francisco, CA 94080, USA

Abstract

ABSTRACT Physiologists often assume that mitochondria are the main producers of reactive oxygen species (ROS) in cells. Consequently, in biomedicine, mitochondria are considered as important targets for therapeutic treatments, and in evolutionary biology, they are considered as mediators of life-history tradeoffs. Surprisingly, data supporting such an assumption are lacking, at least partially due to the technical difficulties in accurately measuring the level of ROS produced by different subcellular compartments in intact cells. In this Commentary, we first review three potential reasons underlying the misassumption of mitochondrial dominance in the production of cellular ROS. We then introduce some other major sites/enzymes responsible for cellular ROS production. With the use of a recently developed cell-based assay, we further discuss the contribution of mitochondria to the total rate of ROS release in cell lines and primary cells of different species. In these cells, the contribution of mitochondria varies between cell types but mitochondria are never the main source of cellular ROS. This indicates that although mitochondria are one of the significant sources of cellular ROS, they are not necessarily the main contributor under normal conditions. Intriguingly, similar findings were also observed in cells under a variety of stressors, life-history strategies and pathological stages, in which the rates of cellular ROS production were significantly enhanced. Finally, we make recommendations for designing future studies. We hope this paper will encourage investigators to carefully consider non-mitochondrial sources of cellular ROS in their study systems or models.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3