Avian thermoregulation in the heat: resting metabolism, evaporative cooling, and heat tolerance in Sonoran Desert songbirds

Author:

Smith Eric Krabbe1ORCID,O'Neill Jacqueline J.1,Gerson Alexander R.12,McKechnie Andrew E.3,Wolf Blair O.1

Affiliation:

1. Department of Biology, University of New Mexico, Albuquerque, NM USA

2. Department of Biology, University of Massachusetts, Amherst, MA USA

3. DST-NRF Centre of Excellence at the Percy FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa

Abstract

We examined thermoregulatory performance in seven Sonoran Desert passerine bird species varying in body mass from 10 to 70g – Lesser Goldfinch, House Finch, Pyrrhuloxia, Cactus Wren, Northern Cardinal, Abert's Towhee and Curve-billed Thrasher. Using flow-through respirometry we measured daytime resting metabolism, evaporative water loss and body temperature at air temperatures (Tair) between 30° and 52°C. We found marked increases in resting metabolism above the upper critical temperature (Tuc), which for six of the seven species fell within a relatively narrow range (36.2° – 39.7°C), but which was considerably higher in the largest species, the Curve-billed Thrasher (42.6°C). Resting metabolism and evaporative water loss were minimal below the Tuc and increased with Tair and body mass to maximum values among species of 0.38 – 1.62 W and 0.87 – 4.02 g H2O hr−1. Body temperature reached maximum values ranging from 43.5° to 45.3°C. Evaporative cooling capacity, the ratio of evaporative heat loss to metabolic heat production, reached maximum values ranging from 1.39–2.06, consistent with known values for passeriforms and much lower than values in taxa such as columbiforms and caprimulgiforms. These maximum values occurred at heat tolerance limits (HTL) that did not scale with body mass among species, but were ∼50°C for all species except the Pyrrhuloxia and Abert's Towhee (HTL=48°C). High metabolic costs associated with respiratory evaporation appeared to drive the limited heat tolerance in these desert passeriforms, compared to larger desert columbiforms and galliforms that use metabolically more efficient mechanisms of evaporative heat loss.

Funder

National Science Foundation

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3