Turbulence induces metabolically costly behaviors and inhibits food capture in oyster larvae, causing net energy loss

Author:

Fuchs Heidi L.1ORCID,Specht Jaclyn A.1,Adams Diane K.1,Christman Adam J.1

Affiliation:

1. Department of Marine and Coastal Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, USA

Abstract

ABSTRACT Planktotrophic invertebrate larvae require energy to develop, disperse and settle successfully, and it is unknown how their energetics are impacted by turbulence. Ciliated larvae gain metabolic energy from their phytoplankton food to offset the energetic costs of growth, development and ciliary activity for swimming and feeding. Turbulence may affect the energetic balance by inducing behaviors that alter the metabolic costs and efficiency of swimming, by raising the encounter rate with food particles and by inhibiting food capture. We used experiments and an empirical model to quantify the net rate of energy gain, swimming efficiency and food capture efficiency for eyed oyster larvae (Crassostrea virginica) in turbulence. At dissipation rates representative of coastal waters, larvae lost energy even when food concentrations were very high. Both feeding activity and turbulence-induced behaviors incurred high metabolic costs. Swimming efficiency was concave up versus dissipation rate, suggesting that ciliary activity for food handling became more costly while swimming became more efficient with turbulence intensity. Though counter-intuitive, swimming may have become more efficient in turbulence because vorticity-induced rotation caused larvae to swim more horizontally, which requires less effort than swimming vertically against the pull of gravity. Overall, however, larvae failed to offset high activity costs with food energy gains because turbulence reduced food capture efficiency more than it enhanced food encounter rates. Younger, smaller larvae may have some energetic advantages, but competent larvae would lose energy at turbulence intensities they experience frequently, suggesting that turbulence-induced starvation may account for much of oysters' high larval mortality.

Funder

Rutgers Research Council

Rutgers, The State University of New Jersey

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference101 articles.

1. Particle-imaging techniques for experimental fluid mechanics;Adrian;Annu. Rev. Fluid Mech.,1991

2. Copepods under turbulence: grazing, behavior and metabolic rates;Alcaraz;Sci. Mar.,1997

3. Competency to settle in oyster larvae, Crassostrea virginica: wild versus hatchery-reared larvae;Baker;Aquaculture,1994

4. Omnivorous feeding by planktotrophic larvae of the eastern oyster Crassostrea virginica;Baldwin;Mar. Ecol. Prog. Ser.,1991

5. Feeding rate responses of oyster larvae (Crassostrea virginica) to seston quality and composition;Baldwin;J. Exp. Mar. Biol. Ecol.,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3