The aerodynamics of flying snake airfoils in tandem configuration

Author:

Jafari Farid1ORCID,Holden Daniel2,LaFoy Roderick2,Vlachos Pavlos P.3,Socha John J.4ORCID

Affiliation:

1. School of Engineering , Grand Valley State University, Grand Rapids, MI 49504, USA

2. Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24060, USA

3. Department of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, USA

4. Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA

Abstract

ABSTRACT Flying snakes flatten their body to form a roughly triangular cross-sectional shape, enabling lift production and horizontal acceleration. While gliding, they also assume an S-shaped posture, which could promote aerodynamic interactions between the fore and the aft body. Such interactions have been studied experimentally; however, very coarse models of the snake's cross-sectional shape were used, and the effects were measured only for the downstream model. In this study, the aerodynamic interactions resulting from the snake's posture were approximated using two-dimensional anatomically accurate airfoils positioned in tandem to mimic the snake's geometry during flight. Load cells were used to measure the lift and drag forces, and flow field data were obtained using digital particle image velocimetry (DPIV). The results showed a strong dependence of the aerodynamic performance on the tandem arrangement, with the lift coefficients being generally more influenced than the drag coefficients. Flow field data revealed that the tandem arrangement modified the separated flow and the wake size, and enhanced the lift in cases in which the wake vortices formed closer to the models, producing suction on the dorsal surface. The downforce created by the flow separation from the ventral surface of the models at 0 deg angle of attack was another significant factor contributing to lift production. A number of cases showing large variations of aerodynamic performance included configurations close to the most probable posture of airborne flying snakes, suggesting that small postural variations could be used to control the glide trajectory.

Funder

National Science Foundation

Defense Advanced Research Projects Agency

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3