Affiliation:
1. Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, MA 02111.
Abstract
Previous studies have demonstrated the presence of type II collagen (in mature chickens predominantly a ‘cartilage-specific’ collagen) in a variety of embryonic extracellular matrices that separate epithelia from mesenchyme. In an immunohistochemical study using collagen type-specific monoclonal antibodies, we asked whether type IX collagen, another ‘cartilage-specific’ collagen, is coexpressed along with type II at such interfaces. We confirmed that, in the matrix underlying a variety of cranial ectodermal derivatives and along the ventrolateral surfaces of neuroepithelia, type II collagen is codistributed with collagen types I and IV. Type IX collagen, however, was undetectable at those sites. We observed immunoreactivity for type IX collagen only within the notochordal sheath, where it first appeared at a later stage than did collagen types I and II. We also observed type II collagen (without type IX) beneath the dorsolateral ectoderm at stage 16; this correlates with the period during which limb ectoderm has been reported to induce the mesoderm to become chondrogenic. Finally, in older hind limbs we observed subepithelial type II collagen that was not associated with subsequent chondrogenesis, but appeared to parallel the formation of feathers and scales in the developing limb. These observations suggest that the deposition of collagen types II and IX into interfacial matrices is regulated independently, and that induction of mesenchymal chondrogenesis by such matrices does not involve type IX collagen. Subepithelial type IX collagen deposition, on the other hand, correlates with the assembly of a thick multilaminar fibrillar matrix, as present in the notochordal sheath and, as shown previously, in the corneal primary stroma.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献