Independent deposition of collagen types II and IX at epithelial-mesenchymal interfaces

Author:

Fitch J.M.1,Mentzer A.1,Mayne R.1,Linsenmayer T.F.1

Affiliation:

1. Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, MA 02111.

Abstract

Previous studies have demonstrated the presence of type II collagen (in mature chickens predominantly a ‘cartilage-specific’ collagen) in a variety of embryonic extracellular matrices that separate epithelia from mesenchyme. In an immunohistochemical study using collagen type-specific monoclonal antibodies, we asked whether type IX collagen, another ‘cartilage-specific’ collagen, is coexpressed along with type II at such interfaces. We confirmed that, in the matrix underlying a variety of cranial ectodermal derivatives and along the ventrolateral surfaces of neuroepithelia, type II collagen is codistributed with collagen types I and IV. Type IX collagen, however, was undetectable at those sites. We observed immunoreactivity for type IX collagen only within the notochordal sheath, where it first appeared at a later stage than did collagen types I and II. We also observed type II collagen (without type IX) beneath the dorsolateral ectoderm at stage 16; this correlates with the period during which limb ectoderm has been reported to induce the mesoderm to become chondrogenic. Finally, in older hind limbs we observed subepithelial type II collagen that was not associated with subsequent chondrogenesis, but appeared to parallel the formation of feathers and scales in the developing limb. These observations suggest that the deposition of collagen types II and IX into interfacial matrices is regulated independently, and that induction of mesenchymal chondrogenesis by such matrices does not involve type IX collagen. Subepithelial type IX collagen deposition, on the other hand, correlates with the assembly of a thick multilaminar fibrillar matrix, as present in the notochordal sheath and, as shown previously, in the corneal primary stroma.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3